Unit ID: 1227

Domain ELECTRICAL INSTALLATION

Title: Demonstrate knowledge of advanced electrical

engineering principles

Level: 4 Credits: 6

Purpose

This unit standard is intended for those who demonstrate knowledge of advanced electrical engineering principles. People credited with this unit standards are able to demonstrate knowledge of Kirchhoff's laws; demonstrate knowledge of circuit theorems; demonstrate knowledge of three phase circuits; and demonstrate knowledge of transformer principles.

This unit standard is intended for those who work as electricians.

Special Notes

1. Entry information:

Prerequisite

- none
- 2. This unit standard is to be delivered and assessed in the context of electrical operations and should be assessed in conjunction with other relevant technical units selected from this domain.
- 3. To demonstrate competence, at a minimum, evidence is required from correct explanations of circuit laws and theorems as well as performing calculations applying these laws.
- 4. Assessment evidence may be collected from a real workplace or a simulated workplace environment in which electrical operations are carried out.

Quality Assurance Requirements

This unit standard and others within this subfield may be awarded by institutions which meet the accreditation requirements set by the Namibia Qualifications Authority and the Namibia Training Authority and which comply with the national assessment and moderation requirements. Details of specific accreditation requirements and the national assessment arrangements are available from the Namibia Qualifications Authority on www.namqa.org and the Namibia Training Authority on www.namqa.org and the Namabia Training Authority on www.n

Elements and Performance Criteria

Element 1: Demonstrate knowledge of Kirchhoff's laws

Performance Criteria

- 1.1 Kirchhoff's laws are stated and explained.
- 1.2 Kirchhoff's laws are applied in performing calculations in electrical circuits.

Element 2: Demonstrate knowledge of circuit theorems

Performance Criteria

- 2.1 Thevenin's theorem is stated and explained.
- 2.2 Thevenin's theorem is applied in performing calculations of electrical circuits.
- 2.3 Norton's theorem is stated and explained.
- 2.4 Norton's theorem is applied in performing calculations in electrical circuits.

Element 3: Demonstrate knowledge of three phase circuits

Performance Criteria

- 3.1 Three phase alternating current generation is explained.
- 3.2 Delta and Star connections are explained and applied in electrical circuits.
- 3.3 Calculations are performed for balanced and unbalanced three phase loads.

Element 4: Demonstrate knowledge of transformer principles

Performance Criteria

- 3.1 Principles of operation of a transformer are explained.
- 3.2 Causes of transformer losses are identified and methods for reducing them are explained.
- 3.3 Transformer full load and no-load tests are explained.
- 3.4 Transformer regulation is explained and practical applications are given.
- 3.5 Calculations for transformer with varying loads are performed.

Registration Data

Subfield:	Electrical Engineering
Date first registered:	24 July 2014
Date this version registered:	23 November 2023
Anticipated review:	23 November 2028
Body responsible for review:	Namibia Training Authority
body responsible for review.	Namibia Training Authority